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In signal processing, a window function (also known as an apodization function 

or tapering function[1]) is a mathematical function that is zero-valued outside of 

some chosen interval. For instance, a function that is constant inside the interval 

and zero elsewhere is called a rectangular window, which describes the shape of 

its graphical representation. When another function or a signal (data) is multiplied 

by a window function, the product is also zero-valued outside the interval: all that is 

left is the part where they overlap; the "view through the window". Applications of 

window functions include spectral analysis, filter design, and beamforming. 

A more general definition of window functions does not require them to be 

identically zero outside an interval, as long as the product of the window multiplied 

by its argument is square integrable, that is, that the function goes sufficiently 

rapidly toward zero.[2] 

In typical applications, the window functions used are non-negative smooth "bell-

shaped" curves,[3] though rectangle and triangle functions and other functions are 

sometimes used. 
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Applications 

 
 

Typical window function frequency response, showing main lobe, side lobe level, and side 
lobe fall-off. 

 

Applications of window functions include spectral analysis and the design of finite 

impulse response filters. 



Spectral analysis 

 
The Fourier transform of the function cos(�t) is zero, except at frequency ± �. 
However, many other functions and data (that is, waveforms) do not have 

convenient closed form transforms. Alternatively, one might be interested in their 

spectral content only during a certain time period. 

 

In either case, the Fourier transform (or something similar) can be applied on one or 

more finite intervals of the waveform. In general, the transform is applied to the 

product of the waveform and a window function. Any window (including rectangular) 

affects the spectral estimate computed by this method. 

 

 
Figure 1: Zoom view of spectral leakage 

 



Windowing 

 

Windowing of a simple waveform, like cos(�t) causes its Fourier transform to have 
non-zero values (commonly called spectral leakage) at frequencies other than �. It 

tends to be worst (highest) near � and least at frequencies farthest from �. 

If there are two sinusoids, with different frequencies, leakage can interfere with the 

ability to distinguish them spectrally. If their frequencies are dissimilar, then the 

leakage interferes when one sinusoid is much smaller in amplitude than the other. 

That is, its spectral component can be hidden by the leakage from the larger 

component. But when the frequencies are near each other, the leakage can be 

sufficient to interfere even when the sinusoids are equal strength; that is, they 

become unresolvable. 

The rectangular window has excellent resolution characteristics for signals of 

comparable strength, but it is a poor choice for signals of disparate amplitudes. This 

characteristic is sometimes described as low-dynamic-range. 

At the other extreme of dynamic range are the windows with the poorest resolution. 

These high-dynamic-range low-resolution windows are also poorest in terms of 

sensitivity; this is, if the input waveform contains random noise close to the signal 

frequency, the response to noise, compared to the sinusoid, will be higher than with 

a higher-resolution window. In other words, the ability to find weak sinusoids amidst 

the noise is diminished by a high-dynamic-range window. High-dynamic-range 

windows are probably most often justified in wideband applications, where the 

spectrum being analyzed is expected to contain many different signals of various 

strengths. 

In between the extremes are moderate windows, such as Hamming and Hann. 

They are commonly used in narrowband applications, such as the spectrum of a 

telephone channel. In summary, spectral analysis involves a tradeoff between 

resolving comparable strength signals with similar frequencies and resolving 

disparate strength signals with dissimilar frequencies. That tradeoff occurs when 

the window function is chosen. 

 



Discrete-time signals 

When the input waveform is time-sampled, instead of continuous, the analysis is 

usually done by applying a window function and then a discrete Fourier transform 

(DFT). But the DFT provides only a coarse sampling of the actual DTFT spectrum. 

Figure 1 shows a portion of the DTFT for a rectangularly-windowed sinusoid. The 

actual frequency of the sinusoid is indicated as "0" on the horizontal axis. 

Everything else is leakage. The unit of frequency is "DFT bins"; that is, the integer 

values on the frequency axis correspond to the frequencies sampled by the DFT. 

So the figure depicts a case where the actual frequency of the sinusoid happens to 

coincide with a DFT sample, and the maximum value of the spectrum is accurately 

measured by that sample. When it misses the maximum value by some amount [up 

to 1/2 bin], the measurement error is referred to as scalloping loss (inspired by the 

shape of the peak). But the most interesting thing about this case is that all the 

other samples coincide with nulls in the true spectrum. (The nulls are actually zero-

crossings, which cannot be shown on a logarithmic scale such as this.) So in this 

case, the DFT creates the illusion of no leakage. Despite the unlikely conditions of 

this example, it is a popular misconception that visible leakage is some sort of 

artifact of the DFT. But since any window function causes leakage, its apparent 

absence (in this contrived example) is actually the DFT artefact. 

 

 

Noise bandwidth 

The concepts of resolution and dynamic range tend to be somewhat subjective, 

depending on what the user is actually trying to do. But they also tend to be highly 

correlated with the total leakage, which is quantifiable. It is usually expressed as an 

equivalent bandwidth, B. Think of it as redistributing the DTFT into a rectangular 

shape with height equal to the spectral maximum and width B. The more leakage, 

the greater the bandwidth. It is sometimes called noise equivalent bandwidth or 

equivalent noise bandwidth, because it is proportional to the average power that will 

be registered by each DFT bin when the input signal contains a random noise 

component (or is just random noise). A graph of the power spectrum, averaged 

over time, typically reveals a flat noise floor, caused by this effect. The height of the 

noise floor is proportional to B. So two different window functions can produce 

different noise floors. 

 



Processing gain 

 

In signal processing, operations are chosen to improve some aspect of quality of a 

signal by exploiting the differences between the signal and the corrupting 

influences. When the signal is a sinusoid corrupted by additive random noise, 

spectral analysis distributes the signal and noise components differently, often 

making it easier to detect the signal's presence or measure certain characteristics, 

such as amplitude and frequency. Effectively, the signal to noise ratio (SNR) is 

improved by distributing the noise uniformly, while concentrating most of the 

sinusoid's energy around one frequency. Processing gain is a term often used to 

describe an SNR improvement. The processing gain of spectral analysis depends 

on the window function, both its noise bandwidth (B) and its potential scalloping 

loss. These effects partially offset, because windows with the least scalloping 

naturally have the most leakage. 

 

For example, the worst possible scalloping loss from a Blackman–Harris window 

(below) is 0.83 dB, compared to 1.42 dB for a Hann window. But the noise 

bandwidth is larger by a factor of 2.01/1.5, which can be expressed in decibels as:   
10 log10(2.01 / 1.5) = 1.27. 

 

Therefore, even at maximum scalloping, the net processing gain of a Hann window 

exceeds that of a Blackman–Harris window by:  1.27 +0.83 -1.42 = 0.68 dB. And 

when we happen to incur no scalloping (due to a fortuitous signal frequency), the 

Hann window is 1.27 dB more sensitive than Blackman–Harris. In general (as 

mentioned earlier), this is a deterrent to using high-dynamic-range windows in low-

dynamic-range applications. 

 



Filter design 
 

 
Sine integral, showing part of frequency response for a truncated low-pass filter. 

 
 

Main article: Filter design 

 

Windows are sometimes used in the design of digital filters, for example to convert 

an "ideal" impulse response of infinite duration, such as a sinc function, to a finite 

impulse response (FIR) filter design. Window choice considerations are related to 

those described above for spectral analysis, or can alternatively be viewed as a 

trade-off between "ringing" and frequency-domain sharpness.[4] 



Window examples 

Terminology: 

• N represents the width, in samples, of a discrete-time window function. Typically 
it is an integer power-of-2, such as 210 = 1024. 

• n is an integer, with values 0 � n � N-1. So these are the time-shifted forms of 

the windows: 

 

  , where  is maximum at n=0. 

 

• Some of these forms have an overall width of N�1, which makes them zero-

valued at n=0 and n=N�1. That sacrifices two data samples for no apparent gain, if 

the DFT size is N. When that happens, an alternative approach is to replace N�1 

with N in the formula. 

 

• Each figure label includes the corresponding noise equivalent bandwidth metric 

(B), in units of DFT bins. As a guideline, windows are divided into two groups on the 

basis of B. One group comprises 1 � B � 1.8, and the other group comprises B � 

1.98. The Gauss and Kaiser windows are families that span both groups, though 

only one or two examples of each are shown. 



High- and moderate-resolution windows 
 

Rectangular window 

 

�(n) = 1 

 

 
Rectangular window; B=1.00 

 

The rectangular window is sometimes known as a Dirichlet window. It is the 

simplest window, taking a chunk of the signal without any other modification at all, 

which leads to discontinuities at the endpoints (unless the signal happens to be an 

exact fit for the window length, as used in multitone testing, for instance). The first 

side-lobe is only 13 dB lower than the main lobe, with the rest falling off at about 6 

dB per octave.[5][6] 



Hann window 
 

 

 
Hann window; B = 1.50 

Main article: Hann function 

 

[note 1] : Windows of the form: 

 

  

have only 2K+1 non-zero DFT coefficients, which makes them good choices for 

applications that require windowing by convolution in the frequency-domain. In those 

applications, the DFT of the unwindowed data vector is needed for a different purpose than 

spectral analysis. (see Overlap-save method) 
 

• Note that: 

 

The ends of the cosine just touch zero, so the side-lobes roll off at about 18 dB per 

octave.[7] 

The Hann and Hamming windows, both of which are in the family known as "raised 

cosine" windows, are respectively named after Julius von Hann and Richard 

Hamming. The term "Hanning window" is sometimes used to refer to the Hann 

window. 



Hamming window 

 

 
 

 
Hamming window; B=1.37 

 

The "raised cosine" with these particular coefficients was proposed by Richard W. 

Hamming. The window is optimized to minimize the maximum (nearest) side lobe, 

giving it a height of about one-fifth that of the Hann window, a raised cosine with 

simpler coefficients.[8][9] 

 [note 1] 
 

• Note that: 

 

 



Tukey window 

 

 
 

 
Tukey window, �=0.5; B=1.22 

 

The Tukey window[10], also known as the tapered cosine window[1], can be 

regarded as a cosine lobe of width � N / 2 that is convolved with a rectangle 

window of width (1- � /2). At �=1 it becomes rectangular, and at �=0 it becomes a 

Hann window. 



Cosine window 

 

 
 

 
Cosine window; B=1.24 

 [note 1] 
 

• also known as sine window 

 
• cosine window describes the shape of �0(n) 



Lanczos window 

 

 
 

 
Sinc or Lanczos window; B=1.31 

 

• used in Lanczos resampling 

 

• for the Lanczos window, sinc(x) is defined as sin(�x)/(�x) 

 

• also known as a sinc window, because: 

 

 is the main lobe of a normalized sinc function. 



Triangular windows 

 

 
 

 
Bartlett window; B=1.33 

 

Bartlett window with zero-valued end-points: 

 

 
 
 

 
Triangular window; B=1.33 

 

Can be seen as the convolution of two half-sized rectangular windows, giving it a 

main lobe width of twice the width of a regular rectangular window. The nearest 

lobe is -26 dB down from the main lobe.[11] 



Gaussian windows 

 

� � 0.5 
 

 
Gauss window, �=0.4; B=1.45 

 

The frequency response of a Gaussian is also a Gaussian (it is an eigenfunction of 

the Fourier Transform). Since the Gaussian function extends to infinity, it must 

either be truncated at the ends of the window, or itself windowed with another zero-

ended window.[12] 

Since the log of a Gaussian produces a parabola, this can be used for exact 

quadratic interpolation in frequency estimation.[13][14][15] 



Bartlett–Hann window 

 

 

 

 
Bartlett-Hann window; B=1.46 

 

 



Blackman windows 

 

 
 

 
Blackman window; � = 0.16; B=1.73 

 

Blackman windows are defined as:[note 1] 

 
By common convention, the unqualified term Blackman window refers to �=0.16. 



Kaiser windows 

 

 
 

 
Kaiser window, � =2; B=1.5 

 

 
Kaiser window, � =3; B=1.8 

 

Main article: Kaiser window 

A simple approximation of the DPSS window using Bessel functions, discovered by 

Jim Kaiser.[16][17] 

 

Note that: 

 



Low-resolution (high-dynamic-range) windows 

[edit] 

 
Nuttall window, continuous first derivative 

 

 
 

 
Nuttall window, continuous first derivative; B=2.02 

 [note 1] 



Blackman–Harris window 

 

 

 
Blackman–Harris window; B=2.01 

 

A generalization of the Hamming family, produced by adding more shifted sinc 

functions, meant to minimize side-lobe levels[18][19] 

 [note 1] 



Blackman–Nuttall window 

 

 
 

 
Blackman–Nuttall window; B=1.98 

 [note 1] 



Flat top window 

 

 
 

 
Flat top window; B=3.77 

 [note 1] 



Other windows 

 
• Bessel window 

 

• Dolph-Chebyshev window 

Minimizes the Chebyshev norm of the side-lobes for a given main lobe width.[20] 

 

• Hann-Poisson window 

A Hann window multiplied by a Poisson window, which has no side-lobes, in the 

sense that the frequency response drops off forever away from the main lobe. It can 

thus be used in hill climbing algorithms like Newton's method.[21] 

 

• Exponential window 

 

• Rife-Vincent window 

 

• DPSS or Slepian window 

The DPSS (digital prolate spheroidal sequence) or Sepian window is used to 

maximize the energy concentration in the main lobe.[22] 

 



Comparison of windows 

 

 
Stop-band attenuation of different windows 

 

When selecting an appropriate window function for an application, this comparison 

graph may be useful. The graph shows only the main lobe of the window's 

frequency response in detail. Beyond that only the envelope of the sidelobes is 

shown to reduce clutter. The frequency axis has units of FFT "bins" when the 

window of length N is applied to data and a transform of length N is computed. For 

instance, the value at frequency � "bin" is the response that would be measured in 

bins k and k+1 to a sinusoidal signal at frequency k+�. It is relative to the maximum 

possible response, which occurs when the signal frequency is an integer number of 

bins. The value at frequency � is referred to as the maximum scalloping loss of the 

window, which is one metric used to compare windows. The rectangular window is 

noticeably worse than the others in terms of that metric. 



Other metrics that can be seen are the width of the main lobe and the peak level of 

the sidelobes, which respectively determine the ability to resolve comparable 

strength signals and disparate strength signals. The rectangular window (for 

instance) is the best choice for the former and the worst choice for the latter. What 

cannot be seen from the graphs is that the rectangular window has the best noise 

bandwidth, and despite its 3 dB potential scalloping loss, it is the best choice for 

detecting a sinusoid at low signal-to-noise ratios. 

 

Overlapping windows 

When the length of a data set to be transformed is larger than necessary to provide 

the desired frequency resolution, a common practice is to subdivide it into smaller 

sets and window them individually. To mitigate the "loss" at the edges of the 

window, the individual sets may overlap in time. See Welch method of power 

spectral analysis and the Modified discrete cosine transform. 

 

See also 

Multitaper 

Apodization 

Welch method 

Short-time Fourier transform 

Window design method 

See also: Window function (SQL) 

 

Note 1 

Windows of the form: ��have only 2K+1 non-zero DFT 
coefficients, which makes them good choices for applications that require windowing by 
convolution in the frequency-domain. In those applications, the DFT of the unwindowed 
data vector is needed for a different purpose than spectral analysis. (see Overlap-save 
method) 
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